mboost Illustrations

نویسندگان

  • Torsten Hothorn
  • Peter Bühlmann
چکیده

This document reproduces the data analyses presented in Bühlmann and Hothorn (2007). For a description of the theory behind applications shown here we refer to the original manuscript. The results differ slightly due to technical changes or bugfixes in mboost that have been implemented after the paper was printed. Most important, gamboost uses penalized B-splines instead of smoothing splines as baselearners. The computations are much faster and the results differ only slightly (Schmid and Hothorn, 2008).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Model-based Boosting in R: A Hands-on Tutorial Using the R Package mboost

We provide a detailed hands-on tutorial for the R add-on package mboost. The package implements boosting for optimizing general risk functions utilizing component-wise (penalized) least squares estimates as base-learners for fitting various kinds of generalized linear and generalized additive models to potentially high-dimensional data. We give a theoretical background and demonstrate how mboos...

متن کامل

Benjamin Hofner , Andreas Mayr , Nikolay Robinzonov , Matthias Schmid Model - based Boosting in R : A Hands - on Tutorial Using the R Package mboost

We provide a detailed hands-on tutorial for the R add-on package mboost. The package implements boosting for optimizing general risk functions utilizing component-wise (penalized) least squares estimates as base-learners for fitting various kinds of generalized linear and generalized additive models to potentially high-dimensional data. We give a theoretical background and demonstrate how mboos...

متن کامل

Model-based Boosting in R: A Hands-on Tutorial Using the R Package mboost. pdfsubject

We provide a detailed hands-on tutorial for the R add-on package mboost. The package implements boosting for optimizing general risk functions utilizing component-wise (penalized) least squares estimates as base-learners for fitting various kinds of generalized linear and generalized additive models to potentially high-dimensional data. We give a theoretical background and demonstrate how mboos...

متن کامل

Managing Domain Knowledge and Multiple Models with Boosting

We present MBoost, a novel extension to AdaBoost that extends boosting to use multiple weak learners explicitly, and provides robustness to learning models that overfit or are poorly matched to data. We demonstrate MBoost on a variety of problems and compare it to cross validation for model selection.

متن کامل

Model-based boosting in high dimensions

SUMMARY The R add-on package mboost implements functional gradient descent algorithms (boosting) for optimizing general loss functions utilizing componentwise least squares, either of parametric linear form or smoothing splines, or regression trees as base learners for fitting generalized linear, additive and interaction models to potentially high-dimensional data. AVAILABILITY Package mboost...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007